作者:张景赵丹周仲兴王彦陈宝元
单位:天津大学精密仪器与光电子工程学院生物医学工程系;医院呼吸与危重症医学科
引用本文:张景,赵丹,周仲兴,等.夜间脉搏血氧饱和度监测对阻塞性睡眠呼吸暂停低通气综合征预测及分类的价值[J].中华结核和呼吸杂志,,44(02):-.DOI:10./cma.j.cn--
摘要
目的
探讨夜间脉搏血氧饱和度(SpO2)监测对阻塞性睡眠呼吸暂停低通气综合征(OSAHS)预测和分类的价值。
方法
回顾性分析年1月至年12月就诊于医院睡眠中心的例打鼾患者的临床资料,男例,女例,年龄13~85(49±14)岁,所有患者均接受了整夜多导睡眠监测(PSG),睡眠呼吸暂停低通气指数(AHI)为0~.4(43.06±27.47)次/h。其中,非OSAHS组(AHI5次/h)52例,轻度OSAHS组(5次/hAHI≤15次/h)69例,中度OSAHS组(15次/hAHI≤30次/h)98例,重度OSAHS组(AHI30次/h)例。从SpO2信号中提取13个指标,与AHI做相关性分析后,最终筛选11个与AHI相关的SpO2指标(3%氧减饱和度回升指数,SpO2低于90%曲线下面积,最低SpO2平均值,最低SpO2,平均SpO2,SpO2分别低于95%、90%、85%、80%、75%、70%的时间百分比),加入3个人口学指标[性别、年龄、体质量指数(BMI)]作为全部特征。分别利用多元线性回归(MLR)方法和反向传播神经网络(BPNN)多分类方法,进行AHI预测和OSAHS严重程度分类。采用SPSS25.0软件进行统计学分析,计量资料均采用Pearson相关检验。
结果
对MLR方法和BPNN多分类方法进行评价。MLR方法获得了较高预测性能,其模型拟合优度r2=0.(P0.05),预测相关系数r=0.(P0.05)。BPNN多分类方法分类结果的特异度和阴性预测率均在90%左右,敏感度和阳性预测率也较高,其中非OSAHS组分类敏感度为88.46%±4.50%,重度OSAHS组分类的敏感度为94.74%±0.76%。
结论
基于夜间SpO2监测仪记录的信号,利用MLR模型进行AHI预测以及利用BPNN模型进行多分类的方法,可能对OSAHS有较高的预测和分类价值。
点击页面左下角“阅读原文”,加入读者俱乐部下载全文
预览时标签不可点收录于话题#个上一篇下一篇